Better saddlepoint confidence intervals via bootstrap calibration
نویسندگان
چکیده
منابع مشابه
Better Saddlepoint Confidence Intervals via Bootstrap Calibration
Confidence interval construction for parameters of lattice distributions is considered. By using saddlepoint formulas and bootstrap calibration, we obtain relatively short intervals and bounds with O(n−3/2) coverage errors, in contrast with O(n−1) and O(n−1/2) coverage errors for normal theory intervals and bounds when the population distribution is absolutely continuous. Closed form solutions ...
متن کاملOn Teaching Bootstrap Confidence Intervals
notion the theoretical distribution on the random variable ) is not available. All we have ICOTS8 (2010) Invited Paper Engel International Association of Statistical Education (IASE) www.stat.auckland.ac.nz/~iase/ to rely on are the data at hand, i.e. the sample or recapture of size n. These data–if drawn by some random mechanism–may well be taken as a good representation of the total fish popu...
متن کاملBOOTSTRAP CONFIDENCE INTERVALS 1 BootES : An R Package for Bootstrap Confidence Intervals on Effect Sizes
Bootstrap Effect Sizes (bootES; Gerlanc & Kirby, 2012) is a free, open source software package for R (R Development Core Team, 2012), which is a language and environment for statistical computing. BootES computes both unstandardized and standardized effect sizes (such as Cohen’s d, Hedges’s g, and Pearson’s r), and makes easily available for the first time the computation of their bootstrap CIs...
متن کاملComputational algorithms for double bootstrap confidence intervals
In some cases, such as in the estimation of impulse responses, it has been found that for plausible sample sizes the coverage accuracy of single bootstrap confidence intervals can be poor. The error in the coverage probability of single bootstrap confidence intervals may be reduced by the use of double bootstrap confidence intervals. The computer resources required for double bootstrap confiden...
متن کاملBootstrap confidence intervals for principal response curves
The Principal Response Curve model is of use to analyze multivariate data resulting from experiments involving repeated sampling in time. The time-dependent treatment effects are represented by Principal Response Curves (PRCs), which are functional in nature. The sample PRCs can be estimated using a raw approach, or the newly proposed smooth approach. The generalizability of the sample PRCs can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1998
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-98-04417-7